A key tool for Great Lakes coregonine restoration is reintroduction via fish stocking. Stocking programs are currently underway, including efforts to restore cisco Coregonus artedi in Saginaw Bay, Lake Huron (Lake Huron Technical Committee 2007; Riley and Ebener 2020)...
Restore
Testing habitat’s influence on Cisco reproductive success using egg translocation
Great Lakes Restoration Initiative studies from the Coordinated Science and Monitoring Initiative, Native Fish Restoration, and DOI Steering Committee from fiscal years 2018 - 2022 have rapidly improved our understanding of how habitat influences coregonine spawning...
Defining bloater spawning habitat to inform potential impediments to Lake Ontario bloater reintroduction
Efforts to reintroduce bloater (Coregonus hoyi) in Lake Ontario have been ongoing for 11 years (Weidel et al. 2022). Although more than 1.1 million bloater have been released, the objective of a self-sustaining population has yet to be achieved. Reintroduction efforts...
Is handling and transport stress limiting post-stocking survival of yearling bloater C. hoyi in Lake Ontario?
Bloater (C. hoyi) have been stocked in Lake Ontario for 11 years with limited success (15 total recaptures; Weidel et al., 2022). Short term (1-12 days) post-stocking survival has been estimated at 42% with 22% of the mortality occurring in the first hour post-release...
Hatchery production and research to support restoration of sustainable Coregonine populations in Lake Ontario (FY23, FY24)
Coregonine species in the Great Lakes, such as Cisco and Bloaters, historically represented a substantial component of the forage base for native cold-water fish like Lake Trout and Atlantic Salmon. Extirpation or depletion of deepwater Bloater populations has left...
Developing a high throughput method to genotype coregonines at a standardized panel of loci for genetic monitoring and parentage-based tagging applications
A central component of coregonine restoration in the Great Lakes is hatchery production, and active supplementation programs are underway in Lakes Ontario and Huron. Importantly, these efforts must consider the decades of work in other salmonids that demonstrate...
Implementation and testing of hatchery enhancements at Allegheny National Fish Hatchery to increase production and improve health and quality of juvenile bloater raised for restoration stocking in Lake Ontario
The proposed project will install 16 15-foot circular fiberglass tanks to replace 10 45-year-old concrete raceways (scalable down to 8 tank option). The project will also assess a side-by-side production level comparison of fish health, water use, fish growth,...
Can stocked Bloater (Coregonus hoyi) survival be increased with environmental conditioning?
Bloater (Coregonus hoyi) were historically an important component of the Lake Ontario fish community but the species was likely extirpated by the 1970’s. A binational restoration has stocked over one million Bloater into Lake Ontario since 2012, however, low...
Examining the potential for unrepresentative sampling during cisco Coregonus artedi gamete collections for the Saginaw Bay restoration effort – Year 2
The cisco Coregonus artedi restoration effort in Saginaw Bay utilizes gametes sourced from northern Lake Huron, in the Les Cheneaux Islands and Drummond Island region (LHTC 2007). Gametes have been collected from bays in the Les Cheneaux area and Whitney Bay (Drummond...
Examining the potential for unrepresentative sampling during cisco Coregonus artedi gamete collections for the Saginaw Bay restoration effort
Great Lakes cisco populations declined during the 19th and 20th centuries due to factors such as overfishing, habitat degradation, and interactions with invasive species (Van Oosten 1930; Crowder 1980; Myers et al. 2009; George 2019). Cisco are now considered...
Region 3 wild coregonine brood stock collection activities for FY 2021 in support of restoration activities on Lake Huron and Lake Ontario
The U.S. Fish and Wildlife Services Midwest Region Fisheries Program carried out two projects in support of a multi-agency effort to restore coregonid populations in Lakes Huron and Ontario. The first project began in 2015 when USFWS began documenting the spawning...
A coordinated approach to monitoring of a coregonine brood and cultured progeny in the R3 FWS hatchery program
Broodstock management and monitoring programs are vital components of all types of stocking initiatives (e.g. Captive, Supportive, restorative, rescue). Broodstock collection and development should aim to preserve genetic diversity and minimize inbreeding and stocking...
Developing a coordinated approach to monitoring of coregonine brood and cultured progeny in the R3 FWS Hatchery Program
Deep-water cisco captive broodstock developed from wild-caught juveniles: proof of concept with Lake Michigan bloater
Hatchery broodstocks (Coregonus artedi and C. hoyi) created via fertilizing eggs with sperm from wild spawning populations or captive brood stock fuel current restoration efforts for ciscoes in the Great Lakes. But, creating these broodstock involves hazards to access...
Enhancing Kiyi (Coregonus kiyi) research to support the conservation and restoration of deep-water coregonine diversity in the Laurentian Great Lakes
The deep-water coregonines of the Coregonus species complex (including C. hoyi, C. kiyi, C. nigripinnis, C. zenithicus, C. johannae, and C. reighardi) in the Laurentian Great Lakes were among the fishes most impacted by overfishing, invasive species, and habitat...
How have changes to coregonine spawning habitat influenced reproductive success?
Lake Ontario’s Cisco, Coregonus artedi, and Lake Whitefish, Coregonus clupeaformis populations have declined for centuries and surveys suggest populations are impeded during early life stages. This project developed methods to quantify habitat specific coregonine egg...
Hatchery production and research to support restoration of sustainable coregonine populations in Lake Ontario
This project focuses on the production of Coregonines at the USFWS-ANFH and NEFC hatcheries, working in partnership with USGSTLAS, NYSDEC, OMNRF, and USFS-LOBS to further progress towards fish community goals outlined by the GLFC Lake Ontario Committee (LOC) through contributing to Coregonine reintroduction and restoration. Production requests originate from the LOC and the NYSDEC. Fish health monitoring is a required component of the production program to transfer fish, maintain optimal fish health in culture facilities, and facilitate the restoration of both the natural forage base and the predatory Lake Trout populations in the Great Lakes. Production of bloater (Coregonus hoyi) in FY22 is part of a multi-year restoration effort for Lake Ontario.
Developing a Great Lakes-wide database of coregonine stocking
A database of information associated with the release of hatchery-raised Coregonine fishes of Great Lakes origin was constructed and populated with all available records (>4,700) of stocking events. The information includes species, quantities, life stages, source...
Hatchery production, fish health surveillance, and research to support restoration of sustainable coregonine populations in Lake Ontario
Project objectives include: (1) Production of coregonines at the USFWS-ANFH and NEFC hatcheries, working in partnership with USGS-TLAS, NYDEC, MNRF, and USFS LOBS represents progress towards fish community goals outlined by the GLFC Lake Ontario Committee through...
Region 3 wild coregonine brood stock collection activities for FY 2020 in support of restoration activities on Lake Huron and Lake Ontario (2020)
The U.S. Fish and Wildlife Services Midwest Region Fisheries Program carried out two projects in support of a multi-agency effort to restore coregonid populations in Lakes Huron and Ontario. The first project began in 2015 when USFWS began documenting the spawning...
Susceptibility and clearance of Aeromonas salmonicida (furunculosis) in Coregonus artedi (lake herring)
Aquaflor® (florfenicol) and Terramycin®200 for Fish (oxytetracycline) are approved medications in the United States for delivery with feed to control mortality in salmonids due to furunculosis associated with Aeromonas salmonicida. The purpose of this study was to...
Region 3 wild coregonine broodstock collection activities for FY 2019 in support of restoration activities on Lake Huron and Lake Ontario
The U.S. Fish and Wildlife Services Midwest Region Fisheries Program carried out two projects in support of a multi-agency effort to restore coregonid populations in Lake Huron and Lake Ontario. The first project began in 2017 when USFWS started collecting cisco...
Captive coregonid brood stock management facilities at Jordan River National Fish Hatchery
Production, fish health surveillance, and research at Northeast Region U.S. Fish & Wildlife Service (USFWS) facilities to support restoration of sustainable coregonid populations in Lake Ontario
How many cisco should be stocked, and at what life stage?
Historically, members of the coregonine complex (Coregonus spp.) were the most abundant and ecologically important fish species in the Great Lakes (especially the cisco C. artedi), but anthropogenic influences caused nearly all populations to collapse by the 1970s....