Restoration and conservation efforts hinge on the identification of key habitats, such as fish spawning habitats (Lewis et al. 1996; Kondolf 2000), and the potentially distinct populations that use them. Knowledge of these habitats can help to ensure that conservation...
Planning
Expanding efforts to document and understand Great Lakes coregonine river spawning
Coregonines were once among the most diverse and ecologically, economically, and culturally important groups of fishes in the Great Lakes (Koelz 1929; Smith 1968; Eshenroder et al. 2016; Duncan 2020). Coregonines declined dramatically throughout the Great Lakes in...
Implementing science planning methods within the Coregonine Restoration Framework via expert knowledge elicitation and workshop facilitation
The Coregonine Restoration Framework includes a Planning Phase that is divided into four elements: (1) resolving coregonine taxonomy using genetics and ecology and delineating spatial units for conservation and restoration, (2) describing and mapping historical and...
Implementation of Coregonine Population Viability Analysis within the Coregonine Restoration Framework – Year 3
The Coregonine Restoration Framework (CRF) provides an adaptive management structure to guide restoration of this suite of species in the Great Lakes Region. Initial steps in this effort established four science teams [Resolve Taxonomy, GAP Analysis, Population...
Development of conceptual early life history models and evaluation of sampling techniques in support of long-term monitoring for cisco and lake whitefish
Recruitment is set early during life (<2 years of age) for many fish populations (Hjort 1914, Houde 1987). From fertilization to juvenile stages, fishes are susceptible to abiotic and biotic factors that directly or indirectly influence growth, condition, and survival (Ludsin et al. 2014, Pritt et al. 2014). The mechanistic processes influencing recruitment, their interactions,and the timing at which they are most influential remains unclear for many fishes. By improving understanding of early life history (ELH) ecology and recruitment constraints, we can improve monitoring and support more informed management decisions. Long-term ELH monitoring programs that inform management are limited for cisco (Coregonus artedi) across the Great Lakes.
Detection of Lake Erie Cisco using eDNA – Applications to Cisco Restoration in the Laurentian Great Lakes
Understanding extant diversity in compromised and healthy ecosystems is important to maintaining or restoring species diversity. Cisco (Coregonus artedi) and other coregonines were once found in all five Great Lakes and were central to Great Lakes food webs. The loss...
Enhancing Kiyi (Coregonus kiyi) research to support the conservation and restoration of deep-water coregonine diversity in the Laurentian Great Lakes
The deep-water coregonines of the Coregonus species complex (including C. hoyi, C. kiyi, C. nigripinnis, C. zenithicus, C. johannae, and C. reighardi) in the Laurentian Great Lakes were among the fishes most impacted by overfishing, invasive species, and habitat...
How have changes to coregonine spawning habitat influenced reproductive success?
Lake Ontario’s Cisco, Coregonus artedi, and Lake Whitefish, Coregonus clupeaformis populations have declined for centuries and surveys suggest populations are impeded during early life stages. This project developed methods to quantify habitat specific coregonine egg...
Building an adaptive tool for mapping habitat and species to support the Great Lakes coregonine conservation and restoration framework
Coregonines have declined substantially over the past century throughout the Great Lakes. A basin-wide framework, adopted by the Council of Lake Committees, has been developed to conserve and restore these ecologically and economically important native fishes. We are...
Inventorying Great Lakes survey and life history information to facilitate coregonine science, conservation, and restoration
Population models are a critical tool for informing native fish conservation and the types of models that can be developed are determined by data availability. In the Great Lakes, the size of the ecosystems and the multi-organizational management approach means...
Identifying and characterizing coregonine spawning habitat in Lake Erie
Historically, Lake Erie supported large catches of Lake Whitefish and Cisco, but presently Cisco are considered extirpated and Lake Whitefish catch rates are highly variable (Oldenburg et al. 2007). For example, Lake Whitefish commercial harvest increased in the...
Morphological and genomic assessment of putative hybridization among deepwater ciscoes and between deepwater ciscoes and typical artedi in Lakes Michigan and Huron
Species diversity can be lost through a combination of demographic decline and hybridization (Mallet 2005; Seehausen 2006). Regarding diversity losses among Ciscoes (subgenus Leucichthys, genus Coregonus) across the Great Lakes, the demographic decline in the 20th...
Integrating historical records to compare historical and contemporary coregonine habitat use in the great lakes
Understanding and comparing historic and contemporary habitat use and distributions of coregonines (Gap Analysis, Box 2) has been deemed essential to inform all boxes of the Great Lakes coregonine restoration framework; there are dependencies between planning boxes...
Resolving taxonomy of the cisco (Coregonus) species complex in the Laurentian Great Lakes and Lake Nipigon
The manager endorsed Coregonine Restoration Framework (CRF) identified a need for reviewing and updating the taxonomy of ciscoes, and this task was assigned to the first of four science teams established in the Planning Phase of the CRF. The ‘Resolve cisco taxonomy’...
Morphological and genomic assessment of putative hybridization among deepwater ciscoes and between deepwater ciscoes and typical artedi in Lakes Michigan and Huron – Year 2
Although species diversity can be lost through hybridization (Mallet 2005; Seehausen 2006) and hybridization has been common among ciscoes (genus Coregonus, subgenus Leucichthys; Smith 1964; Todd and Stedman 1989; Eshenroder et al. 2016; Ackiss et al. 2020), the...
Implementation of Coregonine population viability analysis within the Coregonine restoration framework – Year 2
The Coregonine Restoration Framework provides an adaptive management structure to guide restoration of this suite of species in the Great Lakes Region. Initial steps in this effort are underway with the establishment of four science teams [Resolve Taxonomy, GAP...
Implementation of a gap analysis: comparing historical and contemporary coregonine habitat use in the Great Lakes
Understanding and comparing historic and contemporary habitat use and distributions of coregonines (Gap Analysis, Box 2) has been deemed essential to inform all boxes (Planning Phase) of the Great Lakes coregonine restoration framework (CRF). We are requesting support...
Establishing genetic baselines for historic coregonine diversity in Lake Superior
New research surveying morphological and genetic data across contemporary diversity in the cisco species complex has highlighted critical gaps in our understanding of the historic deepwater diversity in Lake Superior. Historic ciscoe diversity in Lake Superior, which...
Resolving the cisco complex of Lake Superior using morphological and genetic tools
Here we seek additional funding to follow-up a previous GLRI-funded project, “Morphologic, geographic and genetic variation among Lake Superior ciscoes.” Our goal was to conduct a comprehensive description of the morphological and genetic diversity of the Lake...
Lake Superior ciscoe spawning and winter ecology
This proposal expands on our recent work collecting ciscoes in winter near Grand Island, Michigan. This previous Coregonine Restoration Program funded project started the process of gathering data necessary to base Kiyi (Coregonus kiyi) restoration management...
Developing a Great Lakes-wide database of coregonine stocking
A database of information associated with the release of hatchery-raised Coregonine fishes of Great Lakes origin was constructed and populated with all available records (>4,700) of stocking events. The information includes species, quantities, life stages, source...
Genetic diversity among Great Lakes cisco species: exploring taxonomic and population boundaries
Ciscoes (Coregonus artedi, hoyi, kiyi, zenithicus, and nigripinnis) once formed a diverse species flock in the Great Lakes. While several taxa appear to have been extirpated, those that remain are an important part of the Great Lakes food web. Deepwater forms (C....
Historical habitat use by Coregonus artedi in Lake Michigan
With the global-scale loss of biodiversity, current restoration programs have been often required as part of conservation plans for species richness and ecosystem integrity. The restoration of pelagic-oriented cisco (Coregonus artedi) has been an interest of Lake...
Inventory and assessment of coregonine spawning locations in lakes Erie and Ontario, including connecting channels
This project involved two phases. First, to identify locations of key habitats for coregonines in lakes Erie and Ontario and their respective connecting channels, we conducted a literature review of historical spawning, nursery, and adult habitat sites where...
Are cisco and lake whitefish competitors in the Great Lakes? Implications for future reintroduction efforts
The overall objective of this project was to evaluate historical commercial gill net fishery data available for State of Michigan waters of Lakes Superior, Michigan, and Huron for evidence of potential negative interactions between Cisco Coregonus artedi and Lake...